Enlace covalente |
![]() |
Los enlaces covalentes son las fuerzas que mantienen unidos entre sí los átomos no metálicos (los elementos situados a la derecha en la tabla periódica -C, O, F, Cl, ...). Estos átomos tienen muchos electrones en su nivel más externo (electrones de valencia) y tienen tendencia a ganar electrones más que a cederlos, para adquirir la estabilidad de la estructura electrónica de gas noble. Por tanto, los átomos no metálicos no pueden cederse electrones entre sí para formar iones de signo opuesto. En este caso el enlace se forma al compartir un par de electrones entre los dos átomos, uno procedente de cada átomo. El par de electrones compartido es común a los dos átomos y los mantiene unidos, de manera que ambos adquieren la estructura electrónica de gas noble. Se forman así habitualmente moléculas: pequeños grupos de átomos unidos entre sí por enlaces covalentes. |
Los átomos se combinan entre sí compartiendo pares de electrones. Atendiendo al número de pares de electrones compartidos se generarán enlaces simples, dobles o triples. Las parejas de electrones que no forman enlace se llaman pares electrónicos no compartidos.
Pasos para realizar la estructura de Lewis:
- Dibujar el esqueleto molecular uniendo los átomos por enlaces sencillos.
- Contar los electrones de valencia de todos los átomos de la molécula. Si el átomo es un anión deber sumarse su carga al número total de electrones. Si se trata de un catión se restará del total.
- Restar dos electrones por cada enlace sencillo dibujado según la regla 1 y distribuir el resto como pares electrónicos no compartidos, de modo que cada átomo, si es posible, reciba ocho átomos.
Existen moléculas para las que se pueden realizar varias representaciones similares de su estructura, estas estructuras se llaman resonantes y se caracterizan por ser intercambiables entre sí por movimientos de pares de electrones manteniendo los núcleos fijos. Finalmentalmente se ha comprobado que en la molécula de CO2 todos los enlaces entre carbono y oxígeno son iguales. Si una de las estructuras resonantes fuese la verdadera las longitudes de los enlaces serían distintas, ya que los enlaces dobles son más cortos que los sencillos. La estructura real se aproxima a una media de todas las estructuras resonantes, dando lugar a lo que se llama un híbrido de resonancia. Hay ciertas normas que nos permiten saber en caso de duda, cual de las posibles estructuras resonantes es la más estable:
- Será más estable la estructura con mayor número de octetes.
- Será más estable aquella estructura que admita la colocación de las cargas de acuerdo con la electronegatividad de los átomos (las cargas positivas en los más electronegativos y las negativas en los menos electronegativos).
- Será más estable la estructura en la que la separación de las cargas sea menor.
En las estructuras realizadas según el modelo de Lewis para moléculas que contienen C, O, N y F se cumple la regla del octete, pero existen casos en los que esta regla no se cumple.
- Cuando la molécula tiene un número impar de electrones.
- Que en la molécula haya átomos que puedan mantener octetes incompletos.
- Que en la molécula hay elementos con octetes expandidos (elementos con orbitales d cuya energía está próxima a la de los orbitales p, y que por tanto pueden albergar más de ocho electrones).
Parámetros del enlace covalente:
Hay tres parámetros básicos que influyen en la formación de los enlaces:
- Energía de enlace: la que se pone en juego en el proceso siguiente
X2(g) ----- 2X(g)
Hd con H= 436 kJ/mol

- Energía de disociación: está determinada por la fuerza del enlace y se calcula por medio de ciclos termodinámicos experimentales (energías promedio)
C-C 348 kJ/mol
C=C 612 kJ/mol
C=C 837 kJ/mol
- Longitud de enlace: es la distancia promedio entre los núcleos de dos átomos enlazados.
C-H 1’09 A
C-C 1’54 A
C=C 1’34 A
C=C 1’20 A
Además también hay que tener en cuenta la polaridad, que es el carácter iónico de un enlace covalente (diferencia de electronegatividades entre los átomos enlazados). Los valores de la polaridad influyen en las energías de enlace y disociación, así como en la longitud de enlace.
No hay comentarios:
Publicar un comentario